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Two-dimensional weakly nonlinear surface gravity-capillary waves in an ideal fluid of 
finite water depth are considered and nonlinear evolution equations which are correct 
up to the third order of wave steepness are derived including the applied pressure on 
the free surface. Since no assumptions are made on the length scales, the equations can 
be applied to a fluid of arbitrary depth and to disturbances with arbitrary wavelength. 
For one-dimensional gravity waves, these evolution equations are reduced to those 
derived by Matsuno (1992). Most of the known equations for surface waves are 
recovered from the new set of equations as special cases. It is shown that one set 
of equations has a Hamiltonian formulation and conserves mass, momentum and 
energy. The analysis for irrotational flow is extended to two-dimensional uniform 
shear flow. 

1. Introduction 
To describe the nonlinear wave phenomenon in the ocean, various evolution 

equations have been proposed and studied. In shallow water, the Boussinesq equations 
for two-dimensional waves, the Korteweg-de Vries (KdV) equation for uni-directional 
waves, the Kadomtsev-Petviashvili (KP) equation for weakly two-dimensional waves 
and their solitary wave solutions are very well-known and of interests to all disciplines. 
For a fluid of finite depth, the Stokes solution for periodic waves and the nonlinear 
Schrodinger equation for slowly varying wave envelopes have been extensively studied. 
For internal waves in a stratified fluid, other evolution equations in addition to the 
aforementioned ones also have been derived : for example, the intermediate long wave 
equation for a fluid of finite depth and the Benjamin-Ono equation for deep water 
(see Whitham 1974; Miles 1980; Mei 1989). 

Since all these model equations have their own restrictions on the water depth, 
different evolution equations have to be used depending on the depth of interest for 
real applications. In other words, each model equation is valid only for waves of a 
specific wavelength. Therefore, an evolution equation valid for any water depth (or 
for any wavelength) is very valuable and desirable for many applications. 

Recently, Matsuno (1992, 1993~) derived the nonlinear evolution equations for one- 
dimensional gravity waves in a fluid of arbitrary depth by using complex function 
theory and the set of equations analogous to the KP equation for weakly two- 
dimensional waves. He also studied similar sets of equations for gravity waves over 
a non-uniform bottom and for internal waves (Matsuno 1993b,c). Here the Matsuno 
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(1992) equations for one-dimensional waves, correct up to the second order of the 
wave steepness, are extended to two-dimensional third-order nonlinear surface waves 
by using the Fourier transform method, including the effects of pressure forcing on 
the free surface and surface tension. Although the effects of a non-uniform bottom 
could be taken into account, in particular, for slowly varying bottom topography, 
uniform water depth is assumed in this paper. 

Nonlinear evolution equations derived in $92 and 3 have a structure similar to 
the Boussinesq equation for long waves: the kinematic equation and the dynamic 
equation for the surface elevation and the horizontal velocity at free surface. But the 
new set of equations has a full linear dispersion relation for gravity-capillary waves 
with nonlinear corrections and has no restriction on wavelength. As an external 
forcing, the applied pressure on the free surface is considered. In $54 and 5, we 
show that the equations can be reduced to the many known nonlinear models for 
surface waves mentioned earlier by imposing special assumptions on the wavelength 
or water depth. In $6, it is shown that one set of equations for the velocity potential 
evaluated at the free surface is reduced to Hamilton's equations for surface waves 
found by Zakharov (1968) and conserves mass, momentum and energy. Finally, 
similar sets of equations are derived for two-dimensional uniform shear flow with a 
little modification in $ 7. 

2. Derivation of the dynamic equation 
The governing equation for the velocity potential 4 ( x , z , t )  in an inviscid, in- 

compressible and irrotational three-dimensional flow can be written, in Cartesian 
coordinates, as 

and the kinematic boundary conditions at free surface and uniform bottom are given 
V2$ + @,, = 0 for - ho < z < ( ( x , t ) ,  (2.1) 

by 
it + u - VY = w at z = ((x, t ) ,  (2.2) 

w = 0 at z = -ho, (2.3) 
where x = (x,y), V = (&,ay) ,  (u,w) = (Vc$,c$,) is the three-dimensional velocity 
vector, ( ( x , t )  is a displacement of the free surface and ho is a water depth. 

The dynamic boundary condition at the free surface for pressure p is given by 

p = PO + yV * n at z = ((x, t ) ,  (2.4) 

where PO is the external pressure applied to the free surface, y is the surface tension 
and n is the horizontal component of the outward normal vector defined by 

With these governing equations and boundary conditions, the Boussinesq-like equa- 
tions valid for arbitrary water depth will be derived in terms of the surface elevation 
and the horizontal velocity at the free surface. 

First we can derive the dynamic equation by substituting z = ( into the Euler 
equations : 

Ut + u vu + wu, = -vp/p, (2.6) 

(2.7) wt + u * vw + ww, = - p z / p  - g ,  
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where g is the gravitational acceleration. By using the chain rule for differentiation 
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aii 
at z=( = - at -uzlz=( ($) , 

for a horizontal velocity vector at the free surface ii 

ii = ( f i , B )  = u(x,y,[,t),  (2.10) 

and similar expressions for w and p ,  the Euler equations (2.6)-(2.7) can be written 
in terms of all variables evaluated at the free surface, after imposing the boundary 
conditions at the free surface, as 

iit + ii Vii + gV[ = -V (Po/P)  - ( Y / P )  V(V n) - (D2<)V<, (2.11) 

D[ = [ t  + (ii * V)[ . (2.12) 

Notice that the dynamic equation (2.11) is exact for an inviscid and incompressible 
fluid of arbitrary depth and can be applied to both irrotational and rotational flows. 
For irrotational flow, the same equation can be derived directly from the Bernoulli 
equation 

4t + ;(V4l2 + ;h2 + gz + P I P  = C(t), (2.13) 
where C( t )  is an arbitrary function of time and can be set equal to zero. Substituting 
z = [ into (2.13) and taking the two-dimensional gradient yields the dynamic equation 
(2.1 1) using the following condition of irrotational flow: 

fix - fiy = l x ( W y  - Iy(DC)x . (2.14) 

From (2.13), we can also obtain the dynamic equation for the velocity potential at 
the free surface Q,: 

where the vertical velocity at the free surface D[ is given, from (2.2), by 

and, for U = VQ,, 

u, + u - vu + gV[ = -v (Po/p) - ( y / p )  V(V - n) + ;v [ 1 $!J 9 (2.16) 

where 

@(x, t )  = +(x, [, t),  U = V@ = ii + (D<)V<, (2.17) 

D C  = Ct + V@ * V[ = [1+ (VI)’] (DC). (2.18) 

In addition to this dynamic equation, the kinematic equation is required to close the 
system. In other words, one more relation between [ and the velocity (or the velocity 
potential) at the free surface from kinematic considerations is necessary. Since all 
dynamic equations ((2.11), (2.15) and (2.16)) are exact for an ideal fluid, any of them 
can be chosen based on convenience in finding the kinematic equation for the same 
variable. In the following section, the kinematic equation for ii will be pursued and 
one for Q, will be considered later. 
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3. Derivation of the kinematic equation 
First we non-dimensionalize all physical variables as 

(x,z) = L(x ' ,z ' ) ,  t = (L /U) t ' ,  (3.1) 

4 = (UL)4*, (u, w) = U(u', w*) ,  5 = L ", Po = (pU2)P,', ( 3 4  
where L is a characteristic length in the problem, say the wavelength, and U = (gL)'i2 
is a characteristic speed. 

In this problem, we introduce two parameters f l  and E defined by 

P = a / L ,  E = ho/L.  (3.3) 

The first parameter p represents the wave steepness with a characteristic wave am- 
plitude a and, for weakly nonlinear waves, small p is assumed. Since the second 
parameter e --+ 0 for shallow water and E --+ co for deep water, E lies in 0 < E < co 
depending on the water depth. Hereafter, the asterisks for non-dimensional variables 
will be dropped. 

Substituting the following expansions for 4 and 5 into (2.1)-(2.3): 

z ,  t )  = P41 + P 2 4 2  + P343 + 0(P4), (3.4) 

i(x, t )  = prl  + p2r2  + p 3 r 3  + ow4), (3.5) 
the governing equation and the boundary conditions can be written, at O(P"), as 

(v2 +a+,, = o for - e < z < 0, (3.6) 

qLZ = f n  at z = 0, (3.7) 

where 
4nz = 0 at z = -E ,  

fl = 51t ,  f 2  = 5 2 t  + v.  ( C l U ? ) ,  

f 3  = 53t + v * ( 5 1 4  + 1 2 4  + ;GVLt )  7 (3.10) 

Also the horizontal velocity at the free surface can be expanded, in a Taylor series, 
and u: = V$nlz=~. 

about z = 0 as 

ii = V4lz=[ 
= v 4 1 ~ = ~  + ~ l v ~ l z ~ z = o  + 12v41z~z=0 + 11v42z~z=0 + ;i:v41zziz=o + 0 ~ 4 )  

= uo + ivc, + iv  [v - (4 - ;pv(v. i i )  + o(p41, (3.11) 

where equation (3.7) for 4nzlz=0 and uo = ii - 5V[, + O(P3) for nonlinear terms in 
(3.11) have been used. Once uo can be represented in terms of ii and 1, the kinematic 
equation (3.1 1) with the dynamic equation (2.1 1) form the complete set of equations 
for (ii, 5). 

To find uo, it is necessary to solve (3.6) with (3.7)-(3.8) sucessively but, up to O(p3), 
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it is equivalent to solving the following equations: 

(vZ+a;)+=o for - -E<Z<O,  

+z = it + V * ( [ i i  - q[2V[t) = f ( x ,  t )  at z = 0, 

+z = O  at z = --f. 

By using the Fourier transform (FT) defined by 

&k,z, t )  = F[+] = +(x,z, t) eikex dx, 

+(x, z ,  t) = 9 - 1  [$I = ( - in) 1: &k, z, t) e-ik’x dk, 

where k = (kl,k2), the Neumann problem (3.12)-(3.14) can be solved. 
After taking FT, the solution of (3.12)-(3.14) is found to be 

fik,  t )  4 = A(k, t) cosh k(z + f), A(k, t )  = k sinh kc’ 

where k2 = k; + ki. Then the FT of f ( x ,  t) can be written as 

f(k,t) = F [+‘I k tanh(ke) 

= -9 [V - uO] tanh(ke)/k, 

and, after taking the inverse FT, we have 

I roo 

= T - [uo] , 

where 

G(lxl;c) = - tanh(kc) JO(klx1) dk, 6” 
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(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

and Jo(x) is the zeroth-order Bessel function. To obtain (3.19), the integral represen- 
tation for the Bessel function Jo  

(3.21) 

and 
co 

F-’Lfik, t)k(k, t) ]  = / f ( x ’ ,  t)g(x - x’, t) dx‘, (3.22) 
J -oo 

have been used. 
From (3.11), (3.13) and (3.19), the kinematic equation is given by 

Ct + V * ([fi - ;l2V[t) - T * [ii - [V[t - [V(V * (56)) + i(2V2ii] = 0(p4), (3.23) 

where V(V - ii) = V2ii + 0(b2)  from the condition of irrotational flow (2.14) has been 
used. By imposing the same approximation as for (2.11) on (3.23), the dynamic 
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equation correct up to 0(p3 )  can be written, in a non-dimensionalized form, as 

ii, + ii * v i i +  vy = -VPo - pi, + (ii'Vi),]VY 

+ WV p5 - i V -  ((Vi)2Vi)] + 0(p4), (3.24) 

where W = y/(pgL2). Equations (3.23) and (3.24) are the complete system, correct 
up to the third order in wave steepness, governing the evolution of 

By neglecting the third-order terms (or the cubic nonlinear terms) in (3.23) and 
(3.24), the set of evolution equations for two-dimensional waves, correct up to 0(fi2), 
can be obtained as 

it + v gii) - T - [ii - ivy,] = 0(p3), (3.25) 

ii, + ii * v i i  + vy = -VPo - r,,vy + WV(V2i) + 0(P3), (3.26) 
which is the two-dimensional extension of the Matsuno (1992) equation with the 
external forcing and the surface tension (see equations (5.5) and (5.6) below). By 
substituting (3.25)-(3.26) into nonlinear terms having time derivatives in (3.23)-(3.24), 
we can obtain many other forms of evolution equations, all of which are asymptotically 
equivalent to (3.23)-(3.24). 

and ii. 

4. Various limits 

For shallow water, T [ii] has the following limit: 
4.1. Shallow water 

T - [ii] = -e(V - ii) - fe3V2(V - ii) - &e5V2V2(V - ii) + 0(e7 )  as e -+ 0, (4.1) 

which can be found, from (3.19)-(3.20), by using 

k2"+'JO(kr) dk = 27c(-V2)"d(x), 

where 6(x) is Dirac's delta function. Then equations (3.23)-(3.24) with W = 0 for 
long waves become, in a dimensional form, 

Ct+V. [(ho+i)i] +ihiV2(V-ii) = -&hiV2 [vz(V-ii)] +hoV*(4'V(,)+O(a3e3,ae7), (4.3) 

ii, + ii - vii + gvi = -v (Po/p)  - y,,vy + O(a3e3,a2), (4.4) 
where a = a/ho = P / e  and a = 0 ( e 2 )  is assumed. This set of equations is the higher- 
order Boussinesq equation for two-dimensional waves with external forcing while the 
left-hand sides of (4.3)-(4.4) are the classical Boussinesq equation. Substituting the 
following relationship between ii and ii: 

ii = ii - lh2V2ii 3 0  - ;ho[V2ii - &hiV2(V2u) + O(a3e2, a 8 ) ,  (4.5) 

into (4.3) and (4.4) gives the usual form for the depth-mean horizontal velocity ii, 
which is 

( 4 4  

(4-7) 

i t  + v ' [(ho + i,ii] = 0, 

i i t  + ii Vii + gVc = -V (Po/p) + ihiV2iit + C, 
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where C ,  a higher-order correction term to the classical Boussinesq equation, is given 

C = fh;V(ii * VQ - Q’) + $ho (2[VQ, + 3Q,V[) + &hiV(V2Ql), Q = (V * ii). (4.8) 

Equations (4.6) and (4.7) can be further reduced to the (forced) KdV equation for uni- 
directional waves and the KP equation for weakly two-dimensional waves (Whitham 
1974; Wu 1987). 

by 

4.2. Deep water 
In deep water, T * [u] can be reduced to 

= H a  [ii] as E -+ co. (4.9) 

Replacing T - [ii] in (3.23) or (3.25) by H * [ii] gives the evolution equations for 
two-dimensional waves in deep water. 

When we take the Fourier transform of (3.23)-(3.24) with (4.9), by neglecting 
surface tension and external pressure and using 

(4.11) 

we obtain the set of equations in the Fourier-space (or k-space), which was first 
obtained by Phillips (1960) for the resonant interactions of gravity waves in deep 
water (equation (3.19) in his paper). 

4.3. Axisymmetric waves 
For axisymmetric waves, T [ii] can be simplified to 

00 

T * [ii] = 1 (r’ua),rGa(r,r’;e) dr‘, 

where ua = u“(r,t) is a radial velocity, r = 1x1 and 

tanh(ke)J&r’)Jo(kr) dk. 

(4.12) 

(4.13) 

5. One-dimensional waves 

performing the integration in (3.19) with respect to y, to F[[n] defined by 
For two-dimensional flow (or one-dimensional waves), T * [ii] can be reduced, after 

[n(x’, t) S [ 8 ]  = --9 dx‘, 
26 1‘“ -a sinh [(n/2e)(x’ - x)] 

which, for deep water, becomes 

9[[n]- lgpJaW dx’ + O(e-’) = -&[fi] + O(E-’) as e -+ 00, (5.2) 
n --oo x’-x 
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where 9" means the integration in a principal value sense and Z [ g ]  is the Hilbert 
transformation. 

Then the governing equations for one-dimensional waves can be written, in a 
dimensional form, as 

i t  + (rfi - ; i 2 r x t > ,  - r [fi - i i x t  - i(iqXx + ;i2fixx1 = 0(P4), (5.3) 

f i t  + f i f i x  + gix = - (pOx/P) - itti, - (fiix2), + (? /P I  (ix - ;ix3)xx + 0(p4), (5.4) 
where 
PO = y = 0, (5.3)-(5.4) yield the second-order Matsuno (1992) equation 

in (5.1) is replaced by ho. By neglecting the cubic nonlinear terms with 

(5 .5)  i t  + (ifi), - F [n - ir [ f i x ] ]  = 0, 

fit + f i f i x  + s i x  = g i x r  [:.I , (5.6) 

where it = F[fi] + O(p2) and f i t  = -six + O(/J2) are substituted into (5.3)-(5.4) for 
the second-order terms. 

5.1. Uni-directional waves 
When the evolution equations (5.3)-( 5.4) are linearized, we have 

i t  - 9 3 1  = 0, f i t  + gix = ( Y / P )  i x x x ,  (5.7) 

and, after taking the FT, system (5.7) can be written as 

tt - i tanh(kh0)b = 0, b, - igkt = i(y/p)k3t. 

(L!, t) = (a@), W ) )  exp(ikc(k)t), (5.9) 

(5.8) 

By assuming 

the linear dispersion relation for gravity-capillary waves can be found as 

c2 = g k (1 + &k2) tanh(kho), (5.10) 

where c(k) is a linear phase velocity. From c(k) = c(-k) and, for real i(x,O), 

a(-k) = a"(k), (5.11) 

where a*(k) is the complex conjugate of a(k), it can be shown that the positive (or 
negative) sign of c(k) corresponds to the right-going (or left-going) waves. After 
choosing one of the signs for c(k) and taking the inverse FT, we have the following 
linearized evolution equation for uni-directional waves : 

where 

(5.12) 

(5.13) 

Equation (5.12) is the linear term of Whitham's equation (1974, 513.14) when the 
surface tension is neglected. As pointed out by Matsuno (1992), it would be interesting 
to find the nonlinear version of (5.12), but this has not been done yet. 
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5.2. The nonlinear Schrodinger equation 
It is known that the slow modulation of the wave envelope is governed by the cubic 
Schrodinger equation. Since the evolution equations derived in this paper are correct 
up to the third-order wave slope, they can be reduced to the nonlinear Schrodinger 
equation in the appropriate limit. 
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First, assume that 5 and E can be expanded as 

((4 t, 4, z) = P l l  + P212  + P313 + 0(P4), 

qX, t, 4, z) = piil + + p3n3 + o(p4), 

(5.14) 

(5.15) 
where 

5 = P(x - C,t), z = p2t, (5.16) 

and C, is the group velocity to be determined. Also S l f ( 4 ,  z)E”] needs to be expanded 
as 

F [ m ,  ~1 = (9-o [f] + PF, [f] + p 2 r 2  [f] + o ( P ~ ) ) E ~ ,  (5.17) 

where E” = exp(in(kx - ot))  and, for n # 0, 

and, for n = 0, 
y o  [f] = 0, 5 1  [f] = -hofc, 9 - 2  [f] = 0. (5.19) 

After substituting all expansions into (5.3)-(5.4) with y = PO = 0 and choosing the 

(11, f i l ) (X,  t, 4, z) = ( 4 5 , z ) ,  B(5, z)) (ei(kx-wt) + C.C.) , (5.20) 

where C.C. stands for the complex conjugate, we can find the evolution equation for A 
at third order, which turns out to be the nonlinear Schrodinger equation 

i ~ ,  + alA55 + ~ 2 1 ~ 1 ~ ~  = 0, (5.21) 

first-order solution as 

where 
al = ;o”(k), (5.22) 

2ck3 (C, + 2c cosh2 q)2 
a2 = - ck3 (cosh4q+8-2tanh’q ) + gh0-C; 2 (5.23) 

4 sinh4 q 

o2 =gktanhq,  c =  =o‘(k) ,  q =kho. (5.24) 

Further, if <-dependence is neglected, the Stokes wave solutions can be obtained (Mei 
1989, 512.2). For two-dimensional wave envelopes, we may derive the equation of 
Davey & Stewartson (1974) with similar approximations to (3.23) and (3.24). 

5.3. Weakly two-dimensional waves 
For weakly two-dimensional waves, (3.25) and (3.26) can be further reduced to 
equations derived by Matsuno (1993~) by assuming that all physical variables are 
slowly varying functions of y. Let the characteristic length in the y-direction L, 
be large compared with the characteristic length in the x-direction L such that 
LILY = p << 1 and f i / E  = 4y/4x = O(p).  

- -  
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From (3.19), T [ii] can be written as 

T * [ii] = - Jw Jw v.ii(x’,y’+y,t) G ( R ; ~ - )  dx’dy’, (5.25) 
2n -m 

where G is given by (3.20) and 

R2 = (x’ - x ) ~  + y”. (5.26) 

For slow variable y (which can be scaled as py), V - ii can be expanded as 

V * ii(x’, y’ + y, t )  = V - &(XI, y, t )  + y’iixY(x’, y, t )  + ~ ’ ~ f i ~ , , ( ~ ’ ,  y, t)/2 + O(p3), (5.27) 

where p = O(p2)  has been assumed. When we substitute (5.27) into (5.25) and 
differentiate (5.25) once with respect to x, it can be shown that 

w 

T 6 [ f ix]  = Y [ f ix  + C,] + Irn / y’2fixxyy(x’,y, t )  G ( R ;  6) dx’dy’ + O(p3) ,  (5.28) 
471 -a -rn 

where (5.1) has been used for the first term in the right-hand side. On performing 
the integration with respect to y’ and using the irrotational condition (2.14), we can 
obtain, after some manipulations, the expression for T [iix] as 

T [ f ix ]  = s [ a x l +  ;S[B,] - ;ho 1 + ET [n,,] + o(p3). 
To obtain (5.29), the following representation of Dirac’s delta function: 

(5.29) 0 
1 r m  

6(x) = J, C O S ( ~ ~ )  dk, (5.30) 

and the convolution integral given by (3.22) have been used. 

waves can be obtained, in a dimensional form, as 
From (3.25)-(3.26) and (5.29), the evolution equations for weakly two-dimensional 

(5.31) 

(5.32) 

where T - [CVC,] = S[5Cx,] + O ( p 3 )  has been used. Since fi = O([) = O(p), 5 = O(pP) 
and 8, = O(p)  are assumed with p = O(p2), (5.31)-(5.32) are correct up to second 
order in wave steepness p. To eliminate C from (5.31), by differentiating (5.31) with 
respect to x and using 5, = fi, + 0 ( p 2 ) ,  we can find the evolution equations derived 
by Matsuno (1993~) for (C , f i ) ,  with Po = y = 0, as 

[Ct + ( C f i ) x ]  - F[ii - C C x t ]  - ;F[5,] + Iho(1 + FF) [fi,,] = O(p3), 

at + finx + six = - (pOx/P) - LC, + rxxx + ow3), 

[C, + xx - Y[fi - iF[fix]] x x  - IFp,,] + f h o ( l  + SS) [fix,,] = 0, (5.33) 

(5.34) fit + E x  + gCx = g r x s  [C”] , 
where it = F [ E ]  + O(p2)  and f i t  = -grx + O(p2)  are substituted into (5.31)-(5.32) for 
the second-order terms having time derivatives, as before. 

6. Hamiltonian formulation 
By use of the relationship between ii and U = V@ given, from (2.17) and (2.18), by 

ii = u - (it + u VC)VC + o(p4), (6.1) 
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the kinematic equation (3.23) can be rewritten, in terms of (, and @, as 

r t  + V [cV@ - iV((2ct)] - T V [@ - r r t  - iV * (r2V@)] = 0(p4). (6.2) 

From (2.15) with the same order of approximation as that in (6.2), the dynamic 
equation for @ is given by 

@t + ;(v@)2 + g r  = 

- ( P d p )  + + rtV@ VY + ( Y / P )  pi - :V * ((Vi)2Vl)] + 0(p4). (6.3) 

For one-dimensional waves, (6.2) and (6.3) can be reduced to 

r t  + [ l a x  - ; ( r 2 r t ) x I x  - r [QX - ( r r t ) ,  - i(r2@x>xx] = 0, (6.4) 

@t + i @ x 2  + g r  = - (Po/p) + ;l? + L L @ X  + ( ~ / p )  (L - iL3)x.  (6.5) 

Therefore equations (6.2)-(6.3) (or (6.4)-(6.5)) are the complete set of equations for r 
and @. 

Zakharov (1968) has shown that the exact evolution equations for irrotational 
surface waves can be written in the form of Hamilton's equations in which the 
Hamiltonian is the total energy and the conjugate variables are r and @. With the 
total energy (divided by p )  given by 

the canonical equations (Zakharov 1968; Miles 1977) can be written as 

6 6  6 6  
@ --_ 

6" 
r - - Y  t -  t - 6 @  

where 6 represents the functional derivatives. 
For simplicity, we consider here the case of one-dimensional waves without external 

forcing. To find the equations following from the Hamiltonian form, we first substitute 
the following expression into the nonlinear terms of (6.4) and (6.5): 

(6.8) rt = r wX - ( r m x ) x ~  - (raX), + ow3). 
Then we have the evolution equations correct up to O(p3)  as 

r t  + [ W X  - ;(r2s@x)x]x - r [ax - ( Y S @ X ) X  + (rr(rr@x)x) + ; ( r 2 @ x x ) x ]  = 0, 

(6.9) 

After using the Green theorem and the kinematic boundary condition (2.2), we have; 
from (6.6), the total energy 6 in the form 

[(l + rX2)'I2 - 13 dx. (6.11) 



392 W Choi 

Substituting (6.9) into (6.11) for it gives the required Hamiltonian (and the total 
energy) as 

@(TQx) + [Qx2 - ((FcD,)~ + (2@xx(FQx) + ((FQx)S([F@x)x] 

where integration by parts and the antisymmetry of F, 
00 l: f ( Y g )  dx = - s_, g ( 5 - f )  dx, (6.13) 

have been used and the range of integration (-00, 00) can be replaced with (-,?/2, A/2) 
for periodic waves of wavelength 2. With (6.12) and (6.13), it is easy to show that 
the canonical equations (6.7) give the evolution equations (6.9)-(6.10). An alternative 
way to derive equations (6.9) and (6.10) is to substitute the solution of the Laplace 
equation satisfying the kinematic boundary condition at the bottom into (6.6) and 
(6.7). Following this approach, Kuznetsov, Spector & Zakharov (1994) derived the 
second-order equations of (6.9)-(6.10) for deep water with g = y = PO = 0. 

In addition to the conservation of energy obvious from the Hamiltonian formula- 
tion, mass and momentum are also conserved quantities: 

dm - _  - 0 ,  m =  J r  dx, 
dt 

- =0, A'= cQx dx, 
d A  
dt S 

which can be proved from (6.9)-(6.10) by using (6.13) and noticing that 

1: Sf dx = 0. 

(6.14) 

(6.15) 

(6.16) 

7. Equations for two-dimensional uniform shear flow 
When the vorticity is constant in the entire domain at the initial time, two- 

dimensional perturbations to this basic flow are irrotational owing to the conservation 
of vorticity. Therefore the analysis in the preceding sections based on the assumption 
of irrotational flow can also be applied to two-dimensional uniform shear flow with 
a little modification. 

The dynamic equations can be obtained from either (2.11) or the Bernoulli equation 
for constant vorticity given by 

4t + $42 + ;qL2 + g z  + p / p  + ooz$x  - ooy = 0, (7-1) 

where 00 is the constant vorticity and y is a streamfunction for perturbation to 
uniform shear flow. Either method gives the dynamic equation, for 6,  

4 + a f i x  + grx + wo(i6x + DOC) = - (POX/P) - ( y h )  nxx - (Do2r)Cx, ( 7 4  

or, for U = Qx, 
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where the Cauchy-Riemann relation between 4 and y ,  

By using the same method as before, the kinematic equation is found, for ii, as 

it + W o i i x  + [iu - ;(i*it),] ,  - F [u - (lit), - ;(iw)xx - ;oo(i3),,] = 0. (7.7) 

By applying the same order of approximation to the dynamic equation (7.2) (or (7.3)) 
as that in the kinematic equation (7.6) (or (7.7)), the complete set of equations for 5 
and ii (or U )  can be obtained. 

For shallow water with basic shear flow, the solitary wave solution of the KdV 
equation has been studied by Benjamin (1962) and Freeman & Johnson (1970). The 
new set of equations for uniform shear flow considered here is the generalization 
of the previous works to a fluid of finite depth which can be reduced, in shallow 
water, to the Boussinesq equation for bi-directional waves and the KdV equation for 
uni-directional waves. 

8. Discussion 
We have derived the evolution equations for two-dimensional surface waves which 

are correct up to the third order in wave steepness. They have a structure similar to 
the Boussinesq equation for shallow water and can be regarded as the generalized 
Boussinesq equation for a fluid of finite depth. Since no restrictions on the wavelength 
or the water depth are imposed, these systems can serve as the governing equations 
for a general initial value problem to study the evolution of waves with arbitrary 
characteristic length or the interaction of waves of different wavelength. However, the 
numerical techniques capable of handling these sets of equations are yet to be found 
and that will be the subject of future publications. Although we have shown that 
some nonlinear evolution equations can be recovered from the new set of equations, 
other weakly nonlinear models can also be derived with appropriate limits. For 
external forcing, a floating body in addition to the applied pressure on the free 
surface considered here may be included in our analysis for a possible application 
to ship hydrodynamics. The effects of a non-uniform bottom can be taken into 
consideration for two-dimensional flow by using conformal mapping as shown in 
Matsuno (1993b). For a slowly varying bottom h ( x )  with h / L  = 0(1) and h, << 1, 
our set of equations (5.3)-(5.4) (or (6.4)-(6.5)) are still valid if F[g ]  is replaced with 
S,[g] (Matsuno 1993b) given by 
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